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Abstract—Neural networks have recently been introduced to
the microwave area as a fast and flexible vehicle to microwave
modeling, simulation and optimization. In this paper, a novel
neural network structure, namely, knowledge-based neural net-
work (KBNN), is proposed where microwave empirical or semi-
analytical information is incorporated into the internal structure
of neural networks. The microwave knowledge complements the
capability of learning and generalization of neural networks by
providing additional information which may not be adequately
represented in a limited set of training data. Such knowledge
becomes even more valuable when the neural model is used to
extrapolate beyond training data region. A new training scheme
employing gradient basedl2 optimization technique is developed
to train the KBNN model. The proposed technique can be used to
model passive and active microwave components with improved
accuracy, reduced cost of model development and less need of
training data over conventional neural models for microwave
design.

Index Terms—Computer-aided design, modeling, neural net-
work, optimization, simulation.

I. INTRODUCTION

T HE DRIVE for manufacturability-oriented design and re-
duced time-to-market in the microwave industry requires

design tools that are accurate and fast. Statistical analysis
and optimization with detailed physics/electromagnetic (EM)
models of active/passive components can be an important step
toward a design for first-pass success, but it is also computa-
tionally prohibitive using conventional computer-aided design
(CAD) techniques. In recent years, a new CAD approach based
on neural network models has been introduced for microwave
design. It has been applied to the efficient modeling of
microwave components, e.g., microstrip interconnects [1]–[3],
vias [2], spiral inductors [4], and FET devices [5], [6]; and to
the analysis and design of microwave circuits, e.g., microstrip
circuit design [7], automatic microwave impedance matching
[8] and Smith chart oriented microwave circuit analysis and
design [9]. The neural network approach has also been ap-
plied to circuit optimization and statistical design, e.g., signal
integrity analysis and optimization of very large scale inte-
grated circuit (VLSI) interconnects [1], [3], microwave circuit
optimization and statistical design with neural network models
at either device or circuit levels [6], [10]. These pioneering
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works helped to establish the framework and the benefits of the
neural modeling approach for microwave applications. Neural
models can be much faster than original detailed EM/physics
models [2], [10], more accurate than polynomial and empirical
models [11], allow more dimensions than table lookup models
[12] and are easier to develop when a new device/technology
is introduced [13].

This paper addresses some of the growing demands in
the continuing application of neural networks in microwave
design, i.e., reductions of model development cost and im-
provement of model reliability. The most widely used form
of neural networks is the multilayer perceptron (MLP) net-
work which has been adopted in [1]–[7], [10]. MLP has
a well-established error-backpropagation training algorithm,
is simple and has been used in many applications such as
signal processing [14], control [15], speech recognition [16],
as well as in microwave design [1]–[7], [10]. Since the MLP
belongs to the type of black-box model structurally embedding
no problem dependent information, the entire information
about the application comes from training data. Consequently,
large amount of training data is usually needed to ensure
model accuracy. In our microwave application, training data
is obtained by either simulation of the original EM or device
physics problem, or by measurement. Generating large amount
of training data could be very expensive for microwave
problems because simulation/measurement may have to be
performed for many combinations of different values of ge-
ometrical/material/process parameters in the EM or device
physics problems. Without sufficient training data, the neural
models developed may not be very reliable. In addition, even
with sufficient training data, the reliability of MLP when used
for extrapolation purpose is not guaranteed and in many cases
is very poor.

Several attractive approaches to improve neural network
accuracy/generalization capability have been proposed in the
past in the microwave and the neural network communities.
Selection of suitable size of the neural models has been
one way to improve model generalization capability, e.g.,
network pruning [17]. In [2], a hybrid EM–ANN model was
proposed using microwave empirical formulas to approximate
the original model, and using MLP to model the difference
between the original simulation and empirical models. Another
approach is to add prior knowledge into neural networks, e.g.,
[18]. Such knowledge provides additional information of the
original problem which may not be adequately represented in
the limited training data. One type of the existing approaches
is to use symbolic knowledge in the form of rules to establish
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the structure and weights in a neural network [18], [19].
The weights, e.g., the certainty factor associated with rules
[20] or both the topology and weights of the network [21]
can be revised during training. Other approaches to build
prior information into neural networks are, e.g., restricting
the network architecture through the use of local connections
and constraining the choice of weights by the use of weight
sharing [14]. Unfortunately, the existing approaches to incor-
porate knowledge are largely using symbolic information and
are often oriented to pattern recognition area. In microwave
modeling areas, however, the most important problem knowl-
edge is more functional than symbolic/structural [22], [23],
making the existing knowledge network methods unsuitable
for microwave applications.

In this paper, we propose a new microwave-oriented
knowledge-based neural network (KBNN) [24] in which
microwave knowledge in the form of empirical functions
or analytical approximations is embedded into internal neural
network structures. Switching boundary and region neurons
are introduced in the model structure to reflect microwave
cases where different equations or formulas with different
parameters can be interchangeably used in different regions
of the input parameter space. The proposed structure does
not follow the rigorous layer-by-layer structure in MLP, and
a new training algorithm is developed since conventional
backpropagation is not applicable. The proposed technique
enhances neural model accuracy especially for unseen data
and reduces the need of large set of training data.

This paper is organized as follows. Section II starts with the
problem statement of microwave design using neural networks
and then presents the proposed structure of knowledge-based
neural networks (KBNN’s) including a description of the
functionality of individual neurons in the network. A new
training approach for the proposed neural network structure
is described in Section III. Section IV presents several ex-
amples to demonstrate the features and advantages of the
proposed neural model, including circuit waveform modeling,
transmission line and MESFET modeling examples.

II. PROPOSEDKNOWLEDGE-BASED

NEURAL NETWORK (KBNN) STRUCTURE

A. Neural-Based Microwave Modeling: Problem Statement

Let be a -vector containing parameters of a given
device or a circuit, e.g., gate length and gate width of a FET
or geometrical and physical parameters of transmission lines.
Let be a -vector including the responses of the device
or the circuit under consideration, e.g., drain current of a
FET. The relationship between and is multidimensional
and nonlinear. Such a relationship can be modeled by a
neural network which typically consists of a collection of
interconnected neurons, e.g., a conventional MLP [10]. For
example, a three-layer perceptron shown in Fig. 1, consists of
an input layer and an output layer, corresponding to model
input and output variables and , respectively, as well as
a hidden layer.

Fig. 1. The multilayer perceptrons structure. Shown here is a popularly used
three-layer MLP.

Given input , the output can be computed by

(1)

where are values of hidden neurons computed as

(2)

where is an activation function. The overall nonlinear
relationship between and is realized by various activation
patterns of the neurons whose activation functions are typically
a smooth switch function, e.g., the sigmoid function

(3)

In the model development stage, samples of data,
called training data, are generated from original EM simulation
or measurement. The neural model is then trained to learn
the input–output – relationship from the training data.
Specifically training is to determine neural model parameters,
i.e., neural network internal weights and , such that the
neural model predicted output best matches that of training
data. In the model testing stage, a new set of input–output
samples, called testing data, is used to test the accuracy of the
neural model. The ability of neural models to give accurate
when presented with input parameter valuesnever seen dur-
ing training is called the generalization ability. A trained and
tested neural model can then be used online during microwave
design stage providing fast model evaluation replacing original
slow EM/device simulators. The benefit of the neural model
approach is especially significant when the model is highly
repetitively used such as in optimization, Monte Carlo analysis
and yield maximization.

The conventional neural networks, e.g., MLP, are blind
black box models. The standard switching activation functions
such as sigmoid or hyperbolic tangent functions used in
MLP are far different from the various engineering models.
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Fig. 2. The proposed KBNN structure.

The generalization ability of the MLP model comes only
from the information encoded in the training data. Large
amount of training data is usually required to ensure model
accuracy which means increased cost of model development
due to large amount of simulation/measurement of original
EM/device physics problems.

In the next subsection, we will introduce a new neural model
structure to incorporate the available engineering knowledge
about the circuit/components in the form of empirical/semi-
analytical formulas into neural models.

B. Proposed KBNN Structure

The proposed KBNN structure is a nonfully connected
structure shown in Fig. 2. There are six layers in the structure,
namely input layer , knowledge layer , boundary layer ,
region layer , normalized region layer and output layer

. The input layer accepts parameters from outside the
model. The knowledge layer is the place where microwave
knowledge resides in the form of single or multidimensional
functions . For knowledge neuron in the layer:

(4)

where is a vector including neural network inputs
and is a vector of parameters in the knowledge

formula. The knowledge function is usually in the
form of empirical or semi-analytical functions, for example,
the drain current of a FET as a function of its gate length,
gate width, channel thickness, doping density, gate voltage
and drain voltage [23]. The boundary layercan incorporate
knowledge in the form of problem dependent boundary func-
tions or in the absence of boundary knowledge just as
linear boundaries. Neuronin this layer is calculated by

(5)

where is a vector of parameters in defining an open or
closed boundary in the input space. Let be a sigmoid
function. The region layer contains neurons to construct
regions from boundary neurons,

(6)

where and are the scaling and bias parameters, re-
spectively. The normalized region layer contains rational
function based neurons [25] to normalize the outputs of region
layer,

(7)

The output layer contains second-order neurons [26] com-
bining knowledge neurons and normalized region neurons,

(8)

where reflects the contribution of theth knowledge neuron
to output neuron and is the bias parameter. is
1 indicating that region is the effective region of theth
knowledge neuron contributing to theth output. A total of

regions are shared by all the output neurons. As a special
case, if we assume that each normalized region neuron selects
a unique knowledge neuron for each output, the function for
output neurons can be simplified as

(9)

The prior knowledge encoded in and/or needs not
to be very accurate and complete. Several forms of functions

and/or can coexist in the network. The constant
coefficients in the original empirical functions can be replaced
by trainable parameters and more bias/scale parameters can be
added to provide extra variability among different neurons. If
some input parameters are not present in the original empirical
models, they can be added to the knowledge function in
the weighted sum form. The proposed structure was inspired
from the fact that practical empirical functions are usually
valid only in a certain region of the parameter space. To
build a neural model for the entire space, several empirical
formulas and the mechanism to switch among them are needed.
The switching mechanism expands the feature of sigmoidal
radial basis function [27] into high-dimensional space and
with more generalized activation functions. This model retains
the essence of neural networks in that the exact location
of each switching boundary, and the scale and position of
each knowledge function are initialized randomly and then
determined eventually during training.

III. T RAINING APPROACH OFKBNN

Let represent the neural model output. Letrepresent the
corresponding outputs from the original problem, e.g., original
EM simulation or measurement. Neural network learns from
a set of training data , where is the
total number of data samples. The trainable parameters of the
proposed KBNN, denoted as, includes

and
and
. The purpose of training is to determine the weight

parameters inside the KBNN model such that the error
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between the desired outputsand the actual outputs from
KBNN is minimized,

(10)

A gradient based optimization technique is employed in
the training of KBNN, which requires the derivative of error
from individual training samples with respect to each weight in
KBNN, i.e., a Jacobian matrix. Since our network does not
follow a regularly layered MLP structure, microwave empirical
functions instead of standard activation functions are used
in neurons, conventional backpropagation algorithm is not
applicable. A new scheme extending the error backpropagating
idea is derived to obtain this Jacobian matrix.

The error backpropagation path starts from the output layer
. Let the error of neural network prediction for a sample,

e.g., the th sample, be

(11)

where is the actual th neural network output and
is the th output of the th training sample. Jacobian matrix

requires the derivative of error with respect to each
weight in KBNN for each . For simplicity, the subscript is
dropped in the following description. Let the derivative of
with respect to the output of individual neurons be denoted as
. For output layer ( layer), is defined as ,

which can be easily calculated from error function (11), as

(12)

Then the derivatives of errorwith respect to weights ’s and
’s inside the output neuron are obtained as

(13)

(14)

(15)

The proposed KBNN training scheme begins to differ from
conventional backpropagation below the output layer, where
the error propagation is split into two paths, one through the
knowledge layer down to the input layer , and the other
through the normalized region layer , the region layer
and the boundary layer down to the input layer . In the
first path, can be obtained as,

(16)

Continuing the derivative chain rule, the derivatives of error
with respect to the weights inside knowledge neurons (i.e.,
) are

(17)

where is obtained from problem-dependent microwave
empirical functions. In the second path, is first obtained,

(18)

The ’s for the next two layers, i.e., and layers, are

(19)

(20)

The derivatives of error with respect to weights ’s and ’s
inside region neurons are

(21)

(22)

The derivatives of error with respect to weights ’s inside
boundary neurons are,

(23)

The derivatives of error with respect to all the weights inside
KBNN are thus calculated. From (13)–(15), (17), (21)–(23),
Jacobian matrix can be constructed. The next formula shows
the the merge of two error back-propagation paths at the input
layer

(24)
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Fig. 3. The circuit for Example 1 with 3 transmission lines representing
high-speed VLSI interconnects.

Jacobian matrix have columns with the th column
representing derivatives of the error from the th sample
with respect to all the weights in the network, showing as

(25)

With the Jacobian matrix , the optimization approach
[28] is employed in the training to provide better training
efficiency over that of the conventional error backpropagation
algorithm. The training is done with the entire set of training
samples in one batch instead of conventional sample by sample
backpropagation for MLP. The batch training approach can
enjoy the use of powerful optimization techniques such as
quasi-Newton and Luenberg–Marquart techniques [28] and is
much more efficient especially if the training data need not to
be massive, which is the case for KBNN.

IV. EXAMPLES

A. Example 1: Circuit Waveform Modeling

This simple example is mainly for illustration purpose
showing the concept of incorporation of electrical knowledge
into KBNN. A simple circuit with three transmission lines
is shown in Fig. 3 representing signal integrity analysis of
high-speed VLSI interconnects and terminations [13]. The
excitation of the circuit is a step voltage source with 0.1 ns
rise time at node 1. Neural networks (both KBNN and MLP)
were used to model the waveform output at nodes 3 and 4.
The inputs of neural models are resistor valueand time ,
and the outputs are output voltage and . As a circuit
knowledge, the waveform can be estimated by a two-pole
approximation with exponentially decayed sinusoids [29]. This
two-pole approximation knowledge, plus an additional resistor
variable as part of the model input, was incorporated into
KBNN by providing the knowledge function at layer as

(26)

With this two-pole approximation, the boundary in the pa-
rameter space is independent of time. This is the knowledge
embedded in layer realized as a linear function of resistance

TABLE I
MODEL ACCURACY COMPARISON BETWEEN STANDARD MLP AND KBNN FOR

CIRCUIT WAVEFORM MODELING EXAMPLE. THE RESULTS SHOWN ARE

THE AVERAGE OFTHREE DIFFERENT TRAININGS FOR EACH MODEL

only. The output layer is constructed following (9). The size
of KBNN is represented by the number of neurons inand

layers, e.g., b1z2 representing a KBNN with one boundary
neurons and two knowledge neurons. For the traditional MLP,
the size of model is represented by the number of hidden
neurons in the network, e.g., 7 representing a three-layer MLP
with seven hidden neurons.

The training and testing data were obtained by simulation of
the original circuit using HSPICE in the time interval from 0
to 7 ns. The training data was created with five resistor values
of 25, 50, 75, 100, and 125 and with only 10 time points
per resistor value and is used to train the neural models (both
KBNN and MLP). A KBNN of size b1z2 and four MLP’s of
sizes 12, 20, 28, and 36 were trained. Testing data includes
69 time points in the waveform on a different set of resistor
values ( 35, 55, 70, 90, and 115 ).

Table I shows the testing results of both models. For each
model, the average accuracy from three trainings with different
random starting points were used. The accuracy of the model
is represented by the error and correlation coefficient between
neural model output and testing data. A value of correlation
coefficient closer to 1 indicates good accuracy of neural model.
As seen in the table, the training data with 10 time points
per resistor value were insufficient for MLP to model this
set of waveforms. Fig. 4 shows the waveforms from original
HSPICE simulation, KBNN and MLP for resistor value of
115 . The waveforms indicate that the MLP model does not
match well with original waveforms. With the same set of
insufficient training data, KBNN shows very good accuracy.
This illustrates that the prior knowledge provides additional
information which is not adequately represented in the original
training data. The incorporation of such knowledge into neural
models is very helpful to produce a reliable model especially
when fewer training data is available. Another interesting
point is that the empirical knowledge alone, i.e., two-pole
approximation with decay sinusoids, is not an adequate model
by itself, since it cannot represent the waveform change with
respect to resistor values. This example illustrates that through
KBNN a simple empirical function can be used in a large
parameter space provided that variations of the function with
different sets of parameters are used in different regions of the
space. The smooth switching between the regions is realized
in the KBNN network by region neurons.

B. Example 2: Transmission Line Modeling

This example demonstrates the proposed KBNN in mod-
eling cross sectional RLCG parameters of transmission lines
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(a) (b)

(c) (d)

Fig. 4. Model accuracy comparison with original HSPICE simulation for circuit modeling example: (a) MLP and (c) KBNN at node 3; (b) MLP and (d)
KBNN at node 4. All models were trained with data from only 10 points per waveform.

for analysis of high speed VLSI interconnects [13] and its
comparison with traditional MLP. EM simulation of trans-
mission lines is slow especially if it needs to be repeatedly
evaluated. Neural networks learned from EM data have been
found several hundred times faster than original EM simulation
[3]. In this example, MLP and KBNN were used to model the
cross-sectional per unit length mutual inductance,, between
two conductors of a coupled microstrip transmission line. The
inputs of the neural models are width of conductor , thick-
ness of conductor , separation between two conductors

, height of substrate , relative dielectric constant
and frequency . There exist mutual inductance empirical
formulas, e.g., [22],

(27)

This equation becomes the knowledge to be incorporated into
the knowledge neurons following Section II as

(28)

Linear boundary neurons were used in the layer. Notice
that this empirical formula is incorporated multiple times
( times), each with different values of

TABLE II
RANGES OF TRAINING DATA FOR NEURAL MODEL INPUT

PARAMETERS FOR THETRANSMISSION LINE MODELING EXAMPLE

. KBNN provides a complete/integrated (- )
relationship including those not available in the original em-
pirical formula (e.g., with respect to ).

Two KBNN’s (of sizes b2z3 and b4z6) were built and
compared with three MLP’s (with number of hidden neurons
being 7, 15, and 20). Five sets of data were generated by EM
simulation [30]. The first three sets with 100, 300, and 500
samples were generated within the parameter range shown
in Table II and were used for training purpose. The neural
net training was done on SPARC station 5. The CPU time
for MLP training by the conventional sample-by-sample error
backpropagation approach ranged from 10 min (for small
neural network with 100 training samples) to 45 min (for large
neural network with 500 training samples). The CPU time for
MLP or KBNN training by the proposed gradient based
optimization approach in batch mode ranged from 15 s (for
small neural network with 100 training samples) to 5 min (for
large neural network with 500 training samples).
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(a)

(b)

Fig. 5. Model accuracy comparison of KBNN and MLP in terms of average
testing error for the transmission line example. (a) Testing data sampled within
the same range as training data (b) Testing data sampled around/beyond the
boundary of training data. The curves are from models of various sizes and
trainings with different initial weights. The advantage of KBNN over MLP
is even more siginificant when less training data is available. KBNN is also
much more reliable than MLP in the extrapolation region, i.e., in case (b).

TABLE III
MODEL ACCURACY COMPARISON BETWEEN MLP AND KBNN FOR

TRANSMISSION LINE MODELING EXAMPLE WITH TESTING DATA IN THE

SAME REGION AS TRAINING DATA. THE RESULTS SHOWN ARE THE

AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL

A set of 500 testing samples were generated in the same
range as Table II to test the trained neural models with results
shown in Table III. These testing data were never used in
training. A further set of testing data with 4096 samples were
deliberately selected around/beyond the boundary of the model
effective region in input parameter space in order to compare

(a)

(b)

Fig. 6. Model accuracy comparison of KBNN and MLP in terms of worst
case testing error for the transmission line example. (a) Testing data sampled
within the same range as training data (b) Testing data sampled around/beyond
the boundary of training data. The curves are from models of various sizes and
trainings with different initial weights. The advantage of KBNN over MLP
is even more siginificant when less training data is available. KBNN is also
much more reliable than MLP in the extrapolation region, i.e., in case (b).

TABLE IV
MODEL ACCURACY COMPARISON BETWEEN MLP AND KBNN FOR

TRANSMISSION LINE MODELING EXAMPLE WITH TESTING DATA

AROUND/BEYOND TRAINING DATA BOUNDARY. THE RESULTS SHOWN ARE

THE AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL

extrapolation accuracy of KBNN and MLP as shown in Table
IV. A significant superior performance of KBNN over MLP
is demonstrated in the case with smaller training data set,
e.g., 100 samples. Furthermore, the overall tendency suggests
that the accuracy of KBNN trained by a small set of training
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(a)

(b)

Fig. 7. Scattering plot of mutual inductancel12 (a) from MLP and (b) from
KBNN for the transmission line modeling example for 500 testing samples.
Both models were trained with insufficient training data of only 100 samples.

TABLE V
TRAINING DATA RANGES OF NEURAL MODEL INPUT

PARAMETERS FOR MESFET MODELING EXAMPLE

data is comparable to that of MLP trained by a larger set
of training data. Figs. 5 and 6 reveal more information by
showing the error from individual trainings of KBNN and
MLP in terms of average and the worst case testing error,
respectively. A much more stable performance of KBNN when
making an extrapolation prediction is observed over MLP.
The error for KBNN increases much slowly compared to
that of MLP when test data moves to extrapolation region.
Fig. 7 shows the scattering plots of mutual inductance between
neural models (MLP with seven hidden neurons and KBNN
(b2z3)) and original simulation for 500 testing samples within
training data boundary. The ideal plot is that all points should
be at the diagonal line. The plot for KBNN is closer to the
diagonal line and has smaller worst case error envelope. Fig. 8
shows the histograms of error of MLP and KBNN for testing
samples around/beyond training data boundary when trained
by insufficient data of only 100 samples. The error for KBNN

(a)

(b)

Fig. 8. Histograms of testing error of (a) MLP and (b) KBNN for the
transmission line modeling example for 4069 testing samples around/beyond
training data boundary. Both models were trained by only 100 training
samples. Since concentration of errors is closer to 0% for KBNN than that of
MLP, KBNN shows better accuracy than MLP.

TABLE VI
EXTRAPOLATION DATA RANGES OF NEURAL MODEL

INPUT PARAMETERS FOR MESFET MODELING EXAMPLE

mostly concentrate in the vicinity of zero. MLP has some error
distributed at much higher error level. This also indicates the
reliability of KBNN model.

C. Example 3: MESFET Modeling

This example demonstrates the use of the proposed KBNN
to model physics-based MESFET [10] and its comparison with
traditional MLP. Device physical/process parameters(channel
length , channel width , doping density , channel
thickness ) and terminal voltages, i.e., gate-source voltage

and drain-source voltage , are neural network input
parameters and drain current, i.e.,, is the neural network
output. The original problem is physics-based [31] and requires
a slow numerical simulation procedure. The neural network
models (KBNN or MLP) are much faster than the original
physics-based FET model, e.g., about 4 s by KBNN/MLP
and 27 min by original FET model to do 1000 repetitive
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(a)

(b)

Fig. 9. Model accuracy comparison of KBNN and MLP in terms of average
testing error for the MESFET example. (a) Testing data sampled within the
same range as training data. (b) Testing data sampled out of the boundary
of training data by 25% as shown in Table VI. The curves are from models
of various sizes and trainings with different initial weights. The advantage
of KBNN over MLP is even more siginificant when less training data is
available. KBNN is also much more reliable than MLP in the extrapolation
region, i.e., in case (b).

TABLE VII
MODEL ACCURACY COMPARISON BETWEEN STANDARD MLP AND KBNN

FOR MESFET MODELING EXAMPLE WITH TESTING DATA FROM THE

SAME REGION AS TRAINING DATA. THE RESULTS SHOWN ARE THE

AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL

simulations in a Monte Carlo analysis with random values
of device physical/geometrical parameters.

(a)

(b)

Fig. 10. Model accuracy comparison of KBNN and MLP in terms of worst
case testing error for the MESFET example. (a) Testing data sampled within
the same range as training data. (b) Testing data sampled out of the boundary
of training data by 25% as shown in Table VI. The curves are from models
of various sizes and trainings with different initial weights. The advantage
of KBNN over MLP is even more siginificant when less training data is
available. KBNN is also much more reliable than MLP in the extrapolation
region, i.e., in case (b).

There exist empirical formulas for MESFET modeling,
e.g., [23]. The KBNN is developed incorporating empirical
formulas in knowledge layer . Training samples were first
obtained by simulating original Khatibzadeh and Trew models
[31] using OSA901 at randomly selected points. The data range
is shown in Table V. Three sets of training data with 100,
300, and 500 samples, respectively, were used. The neural
net training was done on SPARC station 5. The CPU time
for MLP training by the conventional sample-by-sample error
backpropagation approach ranged from 22 to 60 min. The CPU
time for MLP or KBNN training by proposed gradient based

optimization approach in batch mode ranged from 20 s to
9 min.

The ability to extrapolate beyond the boundary of training
data is a challenge but an important aspect of a model. Two
sets of testing data, one in the same region as training data
in input parameter space and the other is out of the region by
25% (i.e., extrapolation region) shown in Table VI, were used
to test neural network models of various sizes. The results are
tabulated in Tables VII and VIII, respectively. In both cases,
KBNN outperforms MLP in all the accuracy measures. The

1OSA90 Vesion 3.0, Optimization Systems Associations Inc., Dundas, ON,
Canada.
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TABLE VIII
MODEL ACCURACY COMPARISON BETWEEN STANDARD MLP

AND KBNN FOR MESFET MODELING EXAMPLE WITH TESTING DATA

IN THE EXTRAPOLATION REGION. THE RESULTS SHOWN ARE

THE AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL.

(a)

(b)

Fig. 11. An example of IV curves from (a) MLP and (b) KBNN for MESFET
modeling example. Both models were trained with insufficient training data
of only 100 samples. The 100 samples were generated by changing 6 FET
parameters including gate width, length, channel thickness, dopping density,
VGS andVDS. KBNN is visiblely better than standard MLP.

superiority is even more significant when fewer training data
is available. The overall tendency is that KBNN trained with
100 samples can achieve similar accuracy as that of MLP

(a)

(b)

Fig. 12. An example of IV curves from (a) MLP and (b) KBNN for MESFET
modeling example. Both models were trained with reasonable size of training
data of 300 samples.

trained with 300 samples. And KBNN trained by 300 samples
is as accurate as MLP trained by 500 samples. Figs. 9 and 10
reveal more information by showing the errors from individual
trainings. All the trained KBNN’s perform better than any
trained MLP’s when training data set is small.

Moving to the extrapolation region, the accuracy of KBNN’s
deteriorates much more slowly than that of MLP’s. This is
because the built-in knowledge in the KBNN gives it more
information not seen in the training data. Fig. 11 shows an
example of IV curves from the best performing MLP (with
7 hidden neurons) and KBNN (b5z6) models, both trained
by insufficient training data of 100 samples. KBNN is visibly
better than MLP. Fig. 12 shows an example of IV curves from
the same models when trained by 300 samples.

V. CONCLUSION

A KBNN has been proposed combining microwave empiri-
cal experience with the power of learning of neural networks.
A new error backpropagation training scheme for the KBNN
structure utilizing gradient based optimization has been
developed. For the examples presented in this paper, the
model testing errors from KBNN are less than that from
MLP. The advantage of KBNN is even more significant when
training data is insufficient. Reductions in the cost of model
development through reduced need of generating large amount
of training data and more efficient training algorithm have
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been demonstrated. The neural models can learn and predict
component behaviors originally seen in detailed physics/EM
models, and predict such behavior much faster than original
models. This work is significant for the growing use of neural
networks as economical and accurate models in microwave
design. It will have a significant impact on statistical analysis
and design of microwave circuits.
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