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Knowledge-Based Neural Models
for Microwave Design

Fang Wang Student Member, IEEEand Qi-jun ZhangSenior Member, IEEE

Abstract—Neural networks have recently been introduced to works helped to establish the framework and the benefits of the
the microwave area as a fast and flexible vehicle to microwave peyral mode"ng approach for microwave app"cations_ Neural
modeling, simulation and optimization. In this paper, a novel ,o4e|s can be much faster than original detailed EM/physics
neural network structure, namely, knowledge-based neural net- - e
work (KBNN), is proposed where microwave empirical or semi- models [2], [10], more acqurate t_han polynomial and empirical
analytical information is incorporated into the internal structure ~ models [11], allow more dimensions than table lookup models
of neural networks. The microwave knowledge complements the [12] and are easier to develop when a new device/technology
capability of learning and generalization of neural networks by s introduced [13].

providing additional information which may not be adequately : ; :
represented in a limited set of training data. Such knowledge This paper addresses some of the growing demands in

becomes even more valuable when the neural model is used totn€ continuing application of neural networks in microwave
extrapolate beyond training data region. A new training scheme design, i.e., reductions of model development cost and im-
employing gradient basedl; optimization technique is developed provement of model reliability. The most widely used form

model passive and active microwave components with improved . : B
accuracy, reduced cost of model development and less need ofWOfk which has been adopted in [1}-[7], [10]. MLP has

training data over conventional neural models for microwave @ Well-established error-backpropagation training algorithm,
design. is simple and has been used in many applications such as

Index Terms—Computer-aided design, modeling, neural net- signal procgssing [14], Comr_OI [15], speech reFOgnition [16],
work, optimization, simulation. as well as in microwave design [1]-[7], [10]. Since the MLP
belongs to the type of black-box model structurally embedding
no problem dependent information, the entire information
about the application comes from training data. Consequently,

HE DRIVE for manufacturability-oriented design and refarge amount of training data is usually needed to ensure
duced time-to-market in the microwave industry requiramnodel accuracy. In our microwave application, training data
design tools that are accurate and fast. Statistical analyisi®btained by either simulation of the original EM or device
and optimization with detailed physics/electromagnetic (EMjhysics problem, or by measurement. Generating large amount
models of active/passive components can be an important stéptraining data could be very expensive for microwave
toward a design for first-pass success, but it is also compupaeblems because simulation/measurement may have to be
tionally prohibitive using conventional computer-aided desigmerformed for many combinations of different values of ge-
(CAD) techniques. In recent years, a new CAD approach basmdetrical/material/process parameters in the EM or device
on neural network models has been introduced for microwaghysics problems. Without sufficient training data, the neural
design. It has been applied to the efficient modeling ofiodels developed may not be very reliable. In addition, even
microwave components, e.g., microstrip interconnects [1]-[3}ith sufficient training data, the reliability of MLP when used
vias [2], spiral inductors [4], and FET devices [5], [6]; and tdor extrapolation purpose is not guaranteed and in many cases
the analysis and design of microwave circuits, e.g., microstiig very poor.
circuit design [7], automatic microwave impedance matching Several attractive approaches to improve neural network
[8] and Smith chart oriented microwave circuit analysis angccuracy/generalization capability have been proposed in the
design [9]. The neural network approach has also been g@st in the microwave and the neural network communities.
plied to circuit optimization and statistical design, e.g., sign&@election of suitable size of the neural models has been
integrity analysis and optimization of very large scale inte&sne way to improve model generalization capability, e.g.,
grated circuit (VLSI) interconnects [1], [3], microwave circuithetwork pruning [17]. In [2], a hybrid EM—ANN model was
optimization and statistical design with neural network modeffsoposed using microwave empirical formulas to approximate
at either device or circuit levels [6], [10]. These pioneeringhe original model, and using MLP to model the difference
_ _ _ _ between the original simulation and empirical models. Another
Manuscript received March 31, 1997; revised July 21, 1997. This work . . .
pproach is to add prior knowledge into neural networks, e.g.,
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the structure and weights in a neural network [18], [19].
The weights, e.g., the certainty factor associated with rules
[20] or both the topology and weights of the network [21]
can be revised during training. Other approaches to build
prior information into neural networks are, e.g., restricting
the network architecture through the use of local connections
and constraining the choice of weights by the use of weight \
sharing [14]. Unfortunately, the existing approaches to incor- (N2 z Hidden layer
porate knowledge are largely using symbolic information and
are often oriented to pattern recognition area. In microwave
modeling areas, however, the most important problem knowl-
edge is more functional than symbolic/structural [22], [23],
making the existing knowledge network methods unsuitable
for microwave applications.

In this paper, we propose a new microwave-oriented
knowledge-based neural network (KBNN) [24] in which_ , ,

. . . . Fig. 1. The multilayer perceptrons structure. Shown here is a popularly used
microwave knowledge in the form of empirical functiongyee.iayer MLP.
or analytical approximations is embedded into internal neural
network structures. Switching boundary and region neurons )
are introduced in the model structure to reflect microwave Given inputx, the output can be computed by

Input layer

cases where different equations or formulas with different N,
parameters can be interchangeably used in different regions y; = szvjk +n, j=1--,N, (1)
of the input parameter space. The proposed structure does k=1

not follow the rigorous layer-by-layer structure in MLP, anthereZk are values of hidden neurons computed as
a new training algorithm is developed since conventional

backpropagation is not applicable. The proposed technique 2 = g(k)
enhances neural model accuracy especially for unseen data N, )
and reduces the need of large set of training data. Vi = <Z xzwkz> + 6

This paper is organized as follows. Section Il starts with the i=1

problem statement of microwave design using neural Netwolkgere (. s an activation function. The overall nonlinear

and then presents the pr,opqsed structure of knowledge-bagggionship betwees andy is realized by various activation
neural networks (KBNN's) including a description of thé) werms of the neurons whose activation functions are typically
functionality of individual neurons in the network. A NeWy ¢maoth switch function, e.g., the sigmoid function
training approach for the proposed neural network structure

is described in Section Ill. Section IV presents several ex- g(v) 1

= : ®3)
amples to demonstrate the features and advantages of the I+e™

proposed neural model, including circuit waveform modeling, |n the model development stage, samples(xfy) data,
transmission line and MESFET modeling examples. called training data, are generated from original EM simulation
or measurement. The neural model is then trained to learn
the input—output(x—y) relationship from the training data.
Il. PROPOSEDKNOWLEDGE-BASED Specifically training is to determine neural model parameters,
NEURAL NETWORK (KBNN) STRUCTURE i.e., neural network internal weights;,; andv;, such that the
neural model predicted output best matches that of training
data. In the model testing stage, a new set of input—output
samples, called testing data, is used to test the accuracy of the
Let x be a N,-vector containing parameters of a givemeural model. The ability of neural models to give accusate
device or a circuit, e.g., gate length and gate width of a FE¥hen presented with input parameter valsesever seen dur-
or geometrical and physical parameters of transmission lingsy training is called the generalization ability. A trained and
Let y be aV,-vector including the responses of the devictested neural model can then be used online during microwave
or the circuit under consideration, e.g., drain current of @esign stage providing fast model evaluation replacing original
FET. The relationship betweex andy is multidimensional slow EM/device simulators. The benefit of the neural model
and nonlinear. Such a relationship can be modeled byapproach is especially significant when the model is highly
neural network which typically consists of a collection ofepetitively used such as in optimization, Monte Carlo analysis
interconnected neurons, e.g., a conventional MLP [10]. Fand yield maximization.
example, a three-layer perceptron shown in Fig. 1, consists ofThe conventional neural networks, e.g., MLP, are blind
an input layer and an output layer, corresponding to modahck box models. The standard switching activation functions
input and output variables andy, respectively, as well as such as sigmoid or hyperbolic tangent functions used in
a hidden layer. MLP are far different from the various engineering models.

A. Neural-Based Microwave Modeling: Problem Statement
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where «;; and §;; are the scaling and bias parameters, re-

QOutput layer spectively. The normalized region lay®’ contains rational
function based neurons [25] to normalize the outputs of region
layer,

R’ :leogrirg:ﬁzed , 75 )
Knowledge fayer Ty = W? =12, Nr’v Ny = N,. (7)
layer R region J=1"J

layer

B boundary The output layerY contains second-order neurons [26] com-

tayer bining knowledge neurons and normalized region neurons,
N. N,
X  Input layer Y = Zﬁjizi Z pjikT;g +Bj0, J=1,2,---, Ny (8)
=1 k=1
Fig. 2. The proposed KBNN structure. whereg;; reflects the contribution of thith knowledge neuron

to output neurony; and ;o is the bias parametep;;; is
o . 1 indicating that region, is the effective region of theth
;I'he gtﬁnerafllzatlotr_] ability zf (;h_e “{thP tmpc_lel C(;’Tesl_onl)((nowledge neuron contributing to thgh output. A total of
rom the information encoded In the training data. Largg, regions are shared by all the output neurons. As a special

amount of trgmmg data_ls usually required to ensure mo (,% e, if we assume that each normalized region neuron selects
accuracy which means increased cost of model developmg

! . ;. ni knowl neuron for h ) function for
due to large amount of simulation/measurement of Or'g'nghtp&ur?eurgnseggr? bzus?mplci)fieeda(;s outputhe function fo
EM/device physics problems.

In the next subsection, we will introduce a new neural model N
structure to incorporate the available engineering knowledge Yy = Zﬁjim’; + B0, F=1,2,---, Ny 9)
about the circuit/‘components in the form of empirical/semi- i=1

analytical formulas into neural models. The prior knowledge encoded (-) and/orB(-) needs not

to be very accurate and complete. Several forms of functions
B. Proposed KBNN Structure ¥(-) and/or B(-) can coexist in the network. The constant
The proposed KBNN structure is a nonfully connectedoefficients in the original empirical functions can be replaced
structure shown in Fig. 2. There are six layers in the structut®y trainable parameters and more bias/scale parameters can be
namely input layeiX, knowledge layefZ, boundary layeB, added to provide extra variability among different neurons. If
region layerR, normalized region layeR’ and output layer some input parameters are not present in the original empirical
Y. The input layerX accepts parametess from outside the models, they can be added to the knowledge funci¢r) in
model. The knowledge layéf is the place where microwavethe weighted sum form. The proposed structure was inspired
knowledge resides in the form of single or multidimensiondtom the fact that practical empirical functions are usually
functions¥(-). For knowledge neuronin the Z layer: valid only in a certain region of the parameter space. To
. build a neural model for the entire space, several empirical
a=Vilxwi), =12 N, ) formulas and the mechanism to switch F('jlmong them are nF()aeded.
wherex is a vector including neural network inputs, : = The switching mechanism expands the feature of sigmoidal
1,2,---, N, andw; is a vector of parameters in the knowledgéadial basis function [27] into high-dimensional space and
formula. The knowledge functio®;(x, w;) is usually in the with more generalized activation functions. This model retains
form of empirical or semi-analytical functions, for examplethe essence of neural networks in that the exact location
the drain current of a FET as a function of its gate lengtlf each switching boundary, and the scale and position of
gate width, channel thickness, doping density, gate voltagach knowledge function are initialized randomly and then
and drain voltage [23]. The boundary layBrcan incorporate determined eventually during training.
knowledge in the form of problem dependent boundary func-
tions B(-) or in the absence of boundary knowledge just as IIl. TRAINING APPROACH OFKBNN

linear boundaries. Neuronin this layer is calculated by Lety represent the neural model output. etepresent the

b = Bi(x,v;), i=1,2,--- N, (5) corresponding outputs from the original problem, e.g., original
EM simulation or measurement. Neural network learns from
a set of training datéxp,yp), p = 1,---, P, whereP is the
total number of data samples. The trainable parameters of the
tproposed KBNN, denoted aB, includesw;, ¢ = 1,---, N,
Vi, t =1, Ny, Qi andﬁij, t=1,-- Ny, j=1,---, Ny,
Ne /3127/310 and Pjik> k= 17"'7N7"7 v = 17"'7NZ7 J =
TP = H o(ijby +0;;), i=1,2,---,N, (6) 1,...,N,. The purpose of training is to determine the weight
J=1 parametersd inside the KBNN model such that the error

wherev; is a vector of parameters iB; defining an open or
closed boundary in the input spage Let o(-) be a sigmoid

function. The region layefR) contains neurons to construc
regions from boundary neurons,
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between the desired outpugsand the actual outputg from Continuing the derivative chain rule, the derivatives of error

KBNN is minimized, e with respect to the weights inside knowledge neurons (i.e.,
PN, w;) are
mln ZZ Ypj = Upi)- (10) e — e Oz - o —1.2.....N 17
p—lj 1 ow; Oz Ow; 9z ow;’ ' T (17)
A gradient based, optimization technique is employed mwhere 9% s obtained from problem-dependent microwave

the training of KBNN, which requires the derivative of erroremp|r|ca| functions. In the second pag, is first obtained,
from individual training samples with respect to each weight in N N
KBNN, i.e., a Jacobian matrid. Since our network does not e dy; S 3
follow a regularly layered MLP structure, microwave empirical Z ay} or, Z Y5 thpm,
functions instead of standard activation functions are used
in neurons, conventional backpropagation algorithm is not
applicable. A new scheme extending the error backpropagatifige ¢'s for the next two layers, i.eR and B layers, are
idea is derived to obtain this Jacobian matrix.

The error backpropagation path starts from the output layer N de O
Y. Let the error of neural network prediction for a sample, 9 = . ﬁ; ar;

j=

e.g., thepth sample, be
N._s
1 1 -
ADIATRE

N
1 <> N =9 =N
=3 > (pi = Tpi)’ (11) N T (Zkﬁl 7‘k) =t
J=1
i:1727"'7N7‘ (19)

k=1,2--- Nu.. (18)

where y,,; is the actualjth neural network output ang,;

is the jth output of thepth training sample. Jacobian matrix Z e Ir;
J requires the derivative of errof, with respect to each 871 ab;
weight in KBNN for eachp. For simplicity, the subscript is
dropped in the following description. Let the derivative ©f = Zgw (1 = o(ayibi + 6;:) i,
with respect to the output of individual neurons be denoted as
g. For output layerY layer), g, is defined agy,, = de/dy;, i=1,2---,N,. (20)
which can be easily calculated from error function (11), as
5 The derivatives of errog with respect to weights's and§’s
8—;» =y; =7, j=12,---,N,. (12) inside region neurons are
! de  Oe Or; (1 b+ 0N
Then the derivatives of errerwith respect to weight$’s and doi;  Or; Doy gri1i(1 = oleijbj +6:5)b;,
p's inside the output neuron are obtained as i=1,2- N,, j=12---,N, (21)
Je de Or;
de _ : = = gr,mi(1 = o(a;b + 0i;)),
5= =) | etk | 06, ~ or; 0 |
Je k=1 121727"'7N1‘7 j:1727"'7Nb- (22)
o i=12 Ny G=020 Ny (13) g gerivatives of erroe with respect to weights;’s inside
€ _ .
9B =(y; —7%), j=1,2,---,N, (14) boundary neurons are,
O¢ de Ab; 9B,
Oe _ = L=,y i=1,2,--, Ny, 23
Gy (yj = 9)Bjizirye, kb =1,2,-++, Ny, av,  dbov; Toav, T o (23)
Jik

i=1,2,---,N,, j=12,---.N,. (15) The derivatives of error with respect to all the weights inside
KBNN are thus calculated. From (13)—(15), (17), (21)-(23),
The proposed KBNN training scheme begins to differ fromacobian matrixd can be constructed. The next formula shows
conventional backpropagation below the output Iayewhere  the the merge of two error back-propagation paths at the input
the error propagation is split into two paths, one through thgyer X
knowledge layelZ down to the input layeiX, and the other

through the normalized region lay&’, the region layeR ¢, = Je
and the boundary layeB down to the input layeX. In the 83:1
first path,g. can be obtained as, Z O¢ Oz Z Oe Ob;
N N 87:] ox; 0b; Ox;
Oe Jy; zy: _ = ,
Z = (i =85 | D pianri | N N
ayjan et = _Zg‘ﬂ J+Z 9, i=1,2,---,N,. (24)

i=1,2,---,N.. (16)
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©) TABLE |
MobDEL AcCURACY COMPARISON BETWEEN STANDARD MLP AND KBNN FOR
CIrRcuUIT WAVEFORM MODELING EXAMPLE. THE RESULTS SHOWN ARE
THE AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL

Model | No. of Average Largest Correlation
Neural net type Size | Weights | Test error | Test error | Coefficient
12 62 2.40% 18.00% 0.9449
Standard 20 102 2.06% 13.52% 0.9641
(MLP) 28 142 1.65% 9.13% 0.9784
36 182 2.04% 12.98% 0.9664
Knowledge based
(KBNN) blz4 36 1.00% 8.71% 0.9894

only. The output layer is constructed following (9). The size
Fig. 3. The circuit for Example 1 with 3 transmission lines representingf KBNN is represented by the number of neurondgrand
high-speed VLSI interconnects. Z layers, e.g., b1z2 representing a KBNN with one boundary
neurons and two knowledge neurons. For the traditional MLP,
Jacobian matrixJ have P columns with thepth column the size of model is represented by the number of hidden
representing derivatives of the errgy from the pth sample neurons in the network, e.g., 7 representing a three-layer MLP
with respect to all the weights in the network, showing as with seven hidden neurons.
ey e dep The training and testing data were obtained by simulation of
J=|" . 222 .0 = (25) the original circuit using HSPICE in the time interval from O
00 00 02 to 7 ns. The training data was created with five resistor values
With the Jacobian matrixJ, the [, optimization approach of 25, 50, 75, 100, and 128 and with only 10 time points
[28] is employed in the training to provide better trainingper resistor value and is used to train the neural models (both
efficiency over that of the conventional error backpropagatidgéBNN and MLP). A KBNN of size b1z2 and four MLP’s of
algorithm. The training is done with the entire set of trainingizes 12, 20, 28, and 36 were trained. Testing data includes
samples in one batch instead of conventional sample by sam@fetime points in the waveform on a different set of resistor
backpropagation for MLP. The batch training approach camlues ¢ = 35, 55, 70, 90, and 118).
enjoy the use of powerful optimization techniques such asTable | shows the testing results of both models. For each
guasi-Newton and Luenberg—Marquart techniques [28] andniwdel, the average accuracy from three trainings with different
much more efficient especially if the training data need not tandom starting points were used. The accuracy of the model

be massive, which is the case for KBNN. is represented by the error and correlation coefficient between
neural model output and testing data. A value of correlation

IV. EXAMPLES coefficient closer to 1 indicates good accuracy of neural model.

As seen in the table, the training data with 10 time points

A. Example 1: Circuit Waveform Modeling per resistor value were insufficient for MLP to model this

L . . . . set of waveforms. Fig. 4 shows the waveforms from original
This simple example is mainly for illustration PUTPOS§y5p|CE simulation, KBNN and MLP for resistor value of
showing the concept of incorporation of electrical knowledgﬁsg The waveforms indicate that the MLP model does not
into KBNN. A simple circuit with three transmission “nesmatch. well with original waveforms. With the same set of
is_ shown in Fig. 3 representing signal in'gegrity analysis ghsficient training data, KBNN shows very good accuracy.
hlgh-speed thSI _Inte_rc_onnects anoll terminations _[i]?’(])' 1Thﬁ1is illustrates that the prior knowledge provides additional
excitation o tde Cl'rclj't IS ? step VI? tage r;s?(uBrcNern q I\)”_Pr'ﬁformation which is not adequately represented in the original
rise time 3t node dll Eura net;/vor s (bot q an3 q aining data. The incorporation of such knowledge into neural
\_?vt?re- use tc; mo eI t edw;elve orm output a: node§ and fodels is very helpful to produce a reliable model especially
gnp}puts of neural models arle resstczjr vaiuan t|r'net., when fewer training data is available. Another interesting
En tl Zompﬁ'ts are ?utput Vo ts@@ an U‘*'dASb a circuit ioint is that the empirical knowledge alone, i.e., two-pole
nowledge, the waveform can be estimated by a two-pa proximation with decay sinusoids, is not an adequate model
approximation W_'th e_xponenually decayed S'””S‘?'_ds [29]. Th itself, since it cannot represent the waveform change with
two-pole approximation knowledge, plus an additional resistplo o o 16 resistor values. This example illustrates that through
variabler as part of the model input, was incorporated it g\ N 4 simple empirical function can be used in a large
KBNN by providing the knowledge functiod(-) at layerZ as parameter space provided that variations of the function with

2= U(rt,w;) different sets of parameters are used in different regions of the
space. The smooth switching between the regions is realized

— o (wirrtwi2)t o o .Vt iy .
e sin((wigr + wia)t + wisr + wie), in the KBNN network by region neurons.

i=1,2,---,N.. (26)
With this two-pole approximation, the boundary in the pas: Example 2: Transmission Line Modeling

rameter space is independent of timdhis is the knowledge  This example demonstrates the proposed KBNN in mod-
embedded in layeB realized as a linear function of resistanceling cross sectional RLCG parameters of transmission lines
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Fig. 4. Model accuracy comparison with original HSPICE simulation for circuit modeling example: (a) MLP and (c) KBNN at node 3; (b) MLP and (d)
KBNN at node 4. All models were trained with data from only 10 points per waveform.

for analysis of high speed VLSI interconnects [13] and its TABLE I

comparison with traditional MLP. EM simulation of trans- RANGES OF TRAINING DATA FOR NEURAL MODEL INPUT
.. . . . - PARAMETERS FOR THE TRANSMISSION LINE MODELING EXAMPLE

mission lines is slow especially if it needs to be repeatedly

evaluated. Neural networks learned from EM data have been Farameters Notation Range
. L. R . Conductor Width X1 0.10 - 0.25 mm
found several hundred times faster than original EM simulation Conductor Thickness x: 17— 71 um
i nductor Separations X 0.10 - 0.76 mm
[3]. In this _example, M.LP and KBNN were used to model the g::bstrat: H:igm . 010 0.31 mm
cross-sectional per unit length mutual inductarige,between Relative Dielectric Constant x5 3.7-438
Frequency X4 0.5-2 GHz

two conductors of a coupled microstrip transmission line. The
inputs of the neural models are width of condudtey), thick-
ness of conductofzs), separation between two conductorg,2,.--  N,). KBNN provides a complete/integrateck-§)
(z3), height of substratézr.), relative dielectric constaritz;) relationship including those not available in the original em-
and frequency(zg). There exist mutual inductance empiricapirical formula (e.g.y with respect tars, x5, z¢)-

formulas, e.g., [22], Two KBNN's (of sizes b2z3 and b4z6) were built and
Lirhto (224)? compared with three MLP’s (with number of hidden neurons
lig = Fln{l + @t xg)Q} (27)  being 7, 15, and 20). Five sets of data were generated by EM

.simulation [30]. The first three sets with 100, 300, and 500
'@tgmples were generated within the parameter range shown
in Table Il and were used for training purpose. The neural

This equation becomes the knowledge to be incorporated
the knowledge neurons following Section Il as

zi = Ui(x,w,;) net training was done on SPARC station 5. The CPU time

w (14— wi)? for MLP training by the conventional sample-by-sample error
=In|l4evn—"2— 2 ; i

= (21 + 73 — wis)? backpropagation approach ranged from 10 min (for small

t WiaTy + wiszs + wisTe +wir, i=1,2 - N,. neural network with 100 training samples) to 45 min (for large

o ’ T 28) neural network with 500 training samples). The CPU time for

MLP or KBNN training by the proposed gradient baskd
Linear boundary neurons were used in the lajderNotice optimization approach in batch mode ranged from 15 s (for
that this empirical formula is incorporated multiple timesmall neural network with 100 training samples) to 5 min (for
(V. times), each with different values of, (w;, ¢ = large neural network with 500 training samples).
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Fig. 5. Model accuracy comparison of KBNN and MLP in terms of averaggjg . Model accuracy comparison of KBNN and MLP in terms of worst
testing error for the transmission line example. (a) Testing data sampled withke testing error for the transmission line example. (a) Testing data sampled
the same range as training data (b) Testing data sampled around/beyonq, i the same range as training data (b) Testing data sampled around/beyond
boundary of training data. The curves are from models of various sizes afd poundary of training data. The curves are from models of various sizes and
trainings with different initial weights. The advantage of KBNN over MLPyainings with different initial weights. The advantage of KBNN over MLP

is even more siginificant when less training data is available. KBNN is al$9 eyen more siginificant when less training data is available. KBNN is also
much more reliable than MLP in the extrapolation region, i.e., in case (b).much more reliable than MLP in the extrapolation region, i.e., in case (b).

TABLE 11l TABLE IV
MobEL AccurAcY ComPARISON BETWEEN MLP AND KBNN FoR MODEL ACCURACY COMPARISON BETWEEN MLP anD KBNN FoRrR
TRANSMISSION LINE MODELING EXAMPLE WITH TESTING DATA IN THE TRANSMISSION LINE MODELING EXAMPLE WITH TESTING DATA
SAME REGION AS TRAINING DATA. THE RESULTS SHOWN ARE THE AROUND/BEYOND TRAINING DATA BOUNDARY. THE RESULTS SHOWN ARE
AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL THE AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL
Training | Neural net Model | Average | Largest Training | Neural net Model | Average | Largest
sample size type size | test error | test error sample size type size | test error | test error
Standard 7 0.95% 9-30% Standard 7 2.38% 12.09%
(MLP) 15 1.18% 10.07% (MLP) 15 2.66% 13.57%
100 20 1.33% 10.04% 100 20 3.09% 16.00%
Knowledge b2z3 0.51% 4.18% Knowledge b223 | 1.04% 5.43%
based (KBNN) | b4z6 0.64% 4.16% based (KBNN) | b4z6 | 1.05% 5.01%
Standard 7 0.58% 3.12% Standard 7 1.01% 3.61%
(MLP) 15 0.56% | 3.29% (MLP) 15 0.91% 3.66%
300 20 0.58% 3.39% 300 [ 20 0.96% 5.11%
Knowledge b2z3 |} 0.44% 2.59% Knowledge b223 | 0.65% 2.95%
based (KBNN) | bdz6 0.41% 2.64% based (KBNN) |"bdz6 | 0.98% 3.47%
Standard 7 0.51% 3.38% Standard 7 0.85% 3.05%
(MLP) 15 0.54% | 3.30% (MLP) 15 0.89% 3.65%
500 20 0.56% 3.28% 500 20 0.91% 487%
Knowledge | b223 | 041% 2.02% Knowledge b2z3 | 0.77% 2.70%
based (KBNN) | bdz6 0.38% 2.19% based (KBNN) [ bdz6 | 0.837% 2.66%

A set of 500 testing samples were generated in the samet

range as Table Il to test the trained neural models with resufts rapolation accuracy of KBNN and MLP as shown in Table

shown in Table Ill. These testing data were never used M- A Significant superior performance of KBNN over MLP

training. A further set of testing data with 4096 samples wet® demonstrated in the case with smaller training data set,
deliberately selected around/beyond the boundary of the mo€édl., 100 samples. Furthermore, the overall tendency suggests
effective region in input parameter space in order to compatet the accuracy of KBNN trained by a small set of training
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Fig. 8. Histograms of testing error of (a) MLP and (b) KBNN for the
Fig. 7. Scattering plot of mutual inductante (a) from MLP and (b) from  transmission line modeling example for 4069 testing samples around/beyond
KBNN for the transmission line modeling example for 500 testing samplegaining data boundary. Both models were trained by only 100 training
Both models were trained with insufficient training data of only 100 samplesamples. Since concentration of errors is closer to 0% for KBNN than that of
MLP, KBNN shows better accuracy than MLP.

TABLE V
TRAINING DATA RANGES OF NEURAL MODEL INPUT
PARAMETERS FOR MESFET MODELING EXAMPLE

TABLE VI
EXTRAPOLATION DATA RANGES OF NEURAL MODEL
INPUT PARAMETERS FORMESFET MODELING EXAMPLE

Parameters Notation Range

Cate Longth T 9336 _0.503 Parameters Notation Range
8 ' - pm Gate Length L 0.315-0.525 wm
Gate Width w 0.8-1.2 mm .
. Gate Width W 0.75 - 1.25 mm
Channel Thickness a 0.28 - 0.42 um .
. . 23 3 Channel Thickness a 0.263 — 0,438 um
Doping Density Ny 1.68 x 107 -2.52 x 10® 1’ - .
Doping Density Ny 1.58 x 10° - 2,63 x 10° 1/’
Gate Voltage Ve S-0V
Drain Voltage Vi 0-4V Gate Voltage Va S-0V
g 2 Drain Voltage Vo 0-4V

data is comparable to that of MLP trained by a larger Sglos.tly concentrate in'the vicinity of zero. MLP ha§ some error
of training data. Figs. 5 and 6 reveal more information bgls_tnb_gted at much higher error level. This also indicates the
showing the error from individual trainings of KBNN andfeliability of KBNN model.

MLP in terms of average and the worst case testing error, )

respectively. A much more stable performance of KBNN whef: Example 3: MESFET Modeling

making an extrapolation prediction is observed over MLP. This example demonstrates the use of the proposed KBNN
The error for KBNN increases much slowly compared tto model physics-based MESFET [10] and its comparison with
that of MLP when test data moves to extrapolation regiotraditional MLP. Device physical/process parameters(channel
Fig. 7 shows the scattering plots of mutual inductance betwelength L, channel widthW, doping density N,;, channel
neural models (MLP with seven hidden neurons and KBNMicknessa) and terminal voltages, i.e., gate-source voltage
(b2z3)) and original simulation for 500 testing samples withifl’s) and drain-source voltagé’, ), are neural network input
training data boundary. The ideal plot is that all points shoufsthrameters and drain current, i.¢;, is the neural network

be at the diagonal line. The plot for KBNN is closer to th@utput. The original problem is physics-based [31] and requires
diagonal line and has smaller worst case error envelope. Figa &low numerical simulation procedure. The neural network
shows the histograms of error of MLP and KBNN for testingnodels (KBNN or MLP) are much faster than the original
samples around/beyond training data boundary when traingtysics-based FET model, e.g., about 4 s by KBNN/MLP
by insufficient data of only 100 samples. The error for KBNNind 27 min by original FET model to do 1000 repetitive
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Fig. 9. Model accuracy comparison of KBNN and MLP in terms of average.
testing error for the MESFET example. (a) Testing data sampled within t
same range as training data. (b) Testing data sampled out of the boun
of training data by 25% as shown in Table VI. The curves are from mode
of various sizes and trainings with different initial weights. The advantag
of KBNN over MLP is even more siginificant when less training data i
available. KBNN is also much more reliable than MLP in the extrapolatio
region, i.e., in case (b).

. 10. Model accuracy comparison of KBNN and MLP in terms of worst

e testing error for the MESFET example. (a) Testing data sampled within
same range as training data. (b) Testing data sampled out of the boundary
training data by 25% as shown in Table VI. The curves are from models
various sizes and trainings with different initial weights. The advantage
ﬂf KBNN over MLP is even more siginificant when less training data is
available. KBNN is also much more reliable than MLP in the extrapolation
region, i.e., in case (b).

TABLE VII
MoDEL AcCURACY COMPARISON BETWEEN STANDARD MLP AnD KBNN There exist empirical formulas for MESFET modeling
FOR MESFET MoDELING EXAMPLE WITH TESTING DATA FROM THE . i ) L
SaME REGION As TRAINING DATA. THE RESULTS SHOWN ARE THE e.g., [23]. The KBNN is developed incorporating empirical
AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL formulas in knowledge layeZ. Training samples were first
Training | Neural net Model | Average | Largest obtained by simulating original Khatibzadeh and Trew models
sample size | type size | testerror | testerror [31] using OSA94 at randomly selected points. The data range
T is shown in Table V. Three sets of training data with 100,
Standard 14| 338% | 52.53% 300, and 500 samples, respectively, were used. The neural
100 (MLE) ;g atihe gg;‘fj net training was done on SPARC station 5. The CPU time
Knowledge B56 | 1.12% $95% for MLP training by the conventional sample-by-sample error
based (KBNN) | béz8 | 1.03% | 849% backpropagation approach ranged from 22 to 60 min. The CPU
7 0.90% 8.74% : F .
0 150% 1 12857 time f_or_ML_P or KBNN training by proposed gradient based
Standard 14 0.96% | 14.16% [, optimization approach in batch mode ranged from 20 s to
300 (MLP) 8 0.89% 11.09% 9 min
25 1.11% 13.66% o L.
Knowledge b526 | 0.74% 5.68% The ability to extrapolate beyond the boundary of training
based (KBNN) | b6z8 | 0.72% 5.72% data is a challenge but an important aspect of a model. Two
7 0.74% 6.15% . . . ..
0 0705 =399 fser of testing data, one in the same region as tralnln_g data
Standard 14 | 068% | 659% in input parameter space and the other is out of the region by
500 (MLP) o B LB 25% (i.e., extrapolation region) shown in Table VI, were used
Knowledge b526 | 0.61% 537% to test neural network models of various sizes. The results are
based (KBNN) | b6z8 | 0.61% | 547% tabulated in Tables VII and VIII, respectively. In both cases,

KBNN outperforms MLP in all the accuracy measures. The
S|mU|a.t'0ns n _a Monte Ca_-rlo anaIySIS with random Value51OSA90 Vesion 3,@ptimization Systems Associations Inc., Dundas, ON,
of device physical/geometrical parameters. Canada.
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TABLE VI 45|
MobEeL AccurRACY COMPARISON BETWEEN STANDARD MLP 400} _: original model
AND KBNN ForR MESFET MoDELING EXAMPLE WITH TESTING DATA Ford
IN THE EXTRAPOLATION REGION. THE RESULTS SHOWN ARE < 350f o: MLP
THE AVERAGE OF THREE DIFFERENT TRAININGS FOR EACH MODEL. = 300
(3
Training Neural net Model | Average | Largest T 250
sample size type size | test error | test error 'g' 200
7 2.38% | 51.52% £ 150
10 3.36% | 53.38% 3
Standard T4 | 422% | %631% £ 100
100 (MLP) 18 383% | n.oa% 5 s
| 25 5.04% 88.70% o
Knowledge bSz6 | 1.56% 21.69%
based (KBNN) [ 'b6z8 | 1.43% | 11.31% s 6 o5 T 15 & 25 3 35 4
7 1.24% | 12.67% .
i0 1.43% 2831% Drain-source voltage Vds
Standard 14 1.47% 2591% (@
300 (MLP) i8 138% [ 3971%
25 1.52% | 31.83% 450
Knowledge b526 | 1.04% 6.96%
based (KBNN) | b6z8 1.02% 7.92% 400} -: original model
7 1.10% | 12.67% —~ 350} o: KBNN
10 1.00% 7.64% g 200
Standard 14 0.96% 9.35% e
500 (MLP) 18 0.99% | 10.86% T 250
25 1.29% | 15.53% £ 200
Knowledge b5z6 0.83% 6.64% [
based (KBNN) | b6z8 | 0.83% 9.40% ‘g 150
c 100
©
5 50
450 0
400} —: original model -5
000009 -05 0 05 1 15 2 25 3 35 4
. 350 o: MLP ° )
g 300 Drain-source voltage Vds
£ 250} (b)
& 200 Fig. 12. Anexample of IV curves from (a) MLP and (b) KBNN for MESFET
5 150 e modeling example. Both models were trained with reasonable size of training
2 q00f T faerem om0 data of 300 samples.
[u]
a 50
0 trained with 300 samples. And KBNN trained by 300 samples
5 o 95 1 15 2 25 3 35 4 is as accurate as MLP trained by 500 samples. Figs. 9 and 10
Drain-source Voltage Vds reveal more information by showing the errors from individual
@) trainings. All the trained KBNN's perform better than any
trained MLP’s when training data set is small.
ml Moving to the extrapolation region, the accuracy of KBNN’s
::z - original model deteriorates much more slowly than that of MLP’s. This is
T o o: KBNN because the built-in knowledge in the KBNN gives it more
5; 250 information not seen in the training data. Fig. 11 shows an
‘—c’ 200 example of IV curves from the best performing MLP (with
g 7 hidden neurons) and KBNN (b5z6) models, both trained
L 150
3 100 by insufficient training data of 100 samples. KBNN is visibly
= .
T 5 better than MLP. Fig. 12 shows an example of IV curves from
e 0 the same models when trained by 300 samples.
Ld
05 6 o5 1 15 2 25 3 35 4
Drain-source Voltage Vds V. CONCLUSION
(b) A KBNN has been proposed combining microwave empiri-

Fig. 11. Anexample of IV curves from (a) MLP and (b) KBNN for MESFETCal experience with the power Oflle.ammg of neural networks.
modeling example. Both models were trained with insufficient training dafA New error backpropagation training scheme for the KBNN
of only 100 lsarlﬂg!e& The nghSE}mpleﬁ Wﬁre g?nﬁra&ed by ghangin% 6 Ftfucture utilizing gradient baseli optimization has been
parameters including gate width, length, channel thickness, dopping dens . .
Vas and Virs. KBNN is visiblely better than standard MLP. Héveloped._ For the examples presented in this paper, the
model testing errors from KBNN are less than that from
MLP. The advantage of KBNN is even more significant when
superiority is even more significant when fewer training dataaining data is insufficient. Reductions in the cost of model
is available. The overall tendency is that KBNN trained witklevelopment through reduced need of generating large amount

100 samples can achieve similar accuracy as that of MIdP training data and more efficient training algorithm have
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been demonstrated. The neural models can learn and pregizlt C. S. WalkerCapacitance, Inductance and Crosstalk AnalysiBoston,
component behaviors originally seen in detailed physics/EJ\él

models, and predict such behavior much faster than origi a?]
models. This work is significant for the growing use of neurdk4]
networks as economical and accurate models in microwave
design. It will have a significant impact on statistical analysigs)
and design of microwave circuits.
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